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A computational tool to simulate correlated activity in neural circuits
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Abstract

A new computational approach to study correlated neural activity is presented. Simulating Elementary Neural NEtworks for Correlation
Analysis (SENNECA) is a specific-purpose simulator oriented to small circuits of realistic neurons. The model neuron that it implements can
reproduce a wide scope of integrate-and-fire models by simply adjusting the parameter set. Three different distributions of SENNECA are
available: an easy-to-use web-based version, a Matlab (Windows and Linux) script, and a C++ class library for low-level coding. The main
features of the simulator are explained, and several examples of neural activity analysis are given to illustrate the potential of this new tool.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Most neural networks simulators are general-purpose en-
vironments designed for a wide range of modeling prereq-
uisites. This generality is convenient, since the needs of the
neuroscientific community are wide, but it also makes some
of these simulators inappropriate for studies where the com-
putational load is high, or a big effort has to be invested in
learning a language or a complex environment.

Some simulators offer the neuroscientist the possibility
of implementing highly realistic models of the membrane
electrical behavior, with multicompartmental neuron models
like in GENESIS (Bower and Beeman, 1998; The GENESIS
Simulator, 2003), NEURON (Hines and Carnevale, 1997;
Neuron web site at Duke, 2003), NODUS (Nodus software
info, 1999), SNNAP (SNNAP—Simulator for Neural
Networks and Action Potentials, 2003), XNBC (XNBC,
v8, 2001) and NEMOSYS (Eeckman et al., 1993), among
the most popular tools. However, these models are com-
putationally very costly, and networks of several neurons
simulated for long periods demand an extraordinary com-
putational power, not available to a wide scope of the
neuroscientific community. In particular, tasks that involve
analysis of correlated activity with cross-correlograms im-
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ply long simulations, since the neurons under study must
generate enough spikes for the correlogram shape to emerge
from background activity. In these cases, dedicated tools
clearly outperform popular simulators. On the other hand,
some simulators model the neuron at a high level of ab-
straction [like Neurograph (Neurograph home page, 2003),
and NSL (Weitzenfeld et al., 2002; Neural Simulation
Language, 2003], but they are not realistic enough for cor-
relation studies. Other simulators, like the SYNOD/NEST
project (Diesmann and Gewaltig, 2002) or the software de-
scribed inMorrison et al. (2003), focus on large networks
of spiking neurons and correlation studies thereof. While
these simulators can reproduce the type of experiments we
address here, their usage requires considerable training and
no graphical interface is provided.

In this paper we describe SENNECA (The SENNECA
Simulator, 2003), a specific-purpose neural simulator ded-
icated to the study of pairwise correlated activity. This
user-friendly tool is distributed in three different for-
mats: web-based, for quick, installation-free experiments,
Matlab® script, for specific, time-consuming simulations
(run on the user’s computing set up), and as a C++ class li-
brary, when massive simulations are required (e.g. searching
of connectivity or physiological settings that fit specifically
shaped correlograms). SENNECA is based on a highly pa-
rameterized neuron model to allow the independent study of
a wide number of physiological factors, and also to account
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for most variants of realistic neuron models (leaky versus
non-leaky, instantaneous integration versus EPSP-based,
etc.

The description starts with an explanation of the formal
neuron, then goes to a detailed presentation of the tool fea-
tures, and concludes with a representative number of exam-
ples that illustrate the adequacy of this simulator in analyz-
ing correlated activity.

2. Methods

The structure of a simulation has been divided in four
sets of parameters that allow the experimenter to flexibly
define (1) the network topology, (2) the cellular electrical
behavior, (3) the synaptic transmission properties, and (4)
the simulator environmental setting.

2.1. Network parameters

A network of neurons is defined by specifying the number
of neurons, and the synaptic strength of the connections
among them [given byωij in Eq. (2)], that can take positive
or negative values for excitatory and inhibitory synapses,
respectively.

2.2. Neuronal parameters

The model neuron embodied in SENNECA is a
general-purpose integrate-and-fire model (Stein, 1967). It
has been designed according to two main objectives: (1) to
allow the simulation of a wide range of models by setting
parameters to proper values, and (2) to provide the user
with enough degrees of freedom to independently study
the influence of physiological characteristics in pairwise
analysis of neural activity.

The electrical properties of the neuron membrane are ex-
pressed inEq. (1), parameterized by the following constants:

• resting potential (υ): constant value in millivolts where
the membrane potential converges due to the leaky effect,

• threshold potential (θ): membrane potential in millivolts
for spike initiation,

• afterhyperpolarization (ν): it determines the membrane
potential after the spike, given as a percentage of the un-
derthreshold membrane potential just before spike initia-
tion,

• membrane time constant (τ): it determines how long a
postsynaptic potential will last, given in tenths of a mil-
lisecond,

• refractory period (ρ): time in tenths of a millisecond after
the spike during which the threshold does not operate
(although the neuron can integrate synaptic inputs).

The behavior of the dendritic tree depends on four param-
eters:

• background noise: the dendritic input is modeled as a cur-
rent [referred to termr in Eq. (1)] obtained from a distri-
bution selected from a list of different noise sources: uni-
form noise, Gaussian noise, 1/f noise, Poissonian noise
(implemented by synaptic failures as inZador, 1998), and
custom noise (previously generated and stored in a file).
Each noise source has different parameters. Uniform noise
follows a uniform random distribution in an interval given
by a minimum and a maximum value. Gaussian noise is
based on a normal random distribution parameterized by
the mean and standard deviation. 1/f noise has been imple-
mented using the Voss–McCartney pink noise generation
method, and the scale and shift values must be specified.
For Poissonian noise five parameters are necessary: num-
ber of axons reaching a neuron; number of contacts per
axon; inter-spike interval mean rate (Poissonian distribu-
tion); probability of neurotransmitter release in a synaptic
contact (Zador, 1998); and maximum amplitude of each
post-synaptic current. Finally, the simulator can read noise
from a file, that can also be scaled and shifted. (The file
generated by the user should have a time length equal to
or longer than the simulation time. It should be in ASCII
format with each entry representing the current (mA) at
one simulation step (0.1 ms). The name of the file cannot
have more than 255 characters),

• post-synaptic current rise time (α): time in tenths of a mil-
lisecond for the post-synaptic current to reach its maxi-
mum amplitude, modeled as an alpha function. It directly
affects the rise time of the PSP (postsynaptic potential),

• post-synaptic current decay time (β): time in tenths of a
millisecond for the post-synaptic current to decay. It is
also modeled as an alpha function with an independent
decay factor. It influences the PSP duration time,

• post-synaptic current amplitude (ω): modulates the
amount of the dendritic PSC (postsynaptic current). It
is also related with the synaptic efficacy between pairs
of neurons and the connection strength. It is defined in
milliamps,

• axonal transmission delay and synaptic jitter: spike la-
tency and jitter have been modeled as the mean and the
standard deviation of a gaussian random distribution, re-
spectively. They are defined in tenths of a millisecond.

The model that interrelates all these magnitudes is ex-
pressed by three equations that govern the injected synaptic
current [seeEqs. (1) and (2)], and the membrane potential
(Eq. (3)).

Ii(t) = ri(t) +
∑

j

Eji(t − t̂j − Dji) (1)

Eij(u) =




ωij
u

αj

e−u/αj if u ≤ αj

ωij
βj − αj + u

βj

e−(βj−αj+u)/βj if u > αj

(2)
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Vi(t + �t)

=



νVi(t̂i) if t ≤ ρ + t̂i(
1 − �t

τi

)
Vi(t) + �t

C
Ii(t) + �t

τi

υ if t > ρ + t̂i

(3)

where t̂j is the simulation step where neuronj fired last
time, andDji is the overall delay of the last spike in neu-
ron j to reach neuroni, where both, constant transmission
delay and variable synaptic jitter, contribute.C is de capac-
ity of the membrane. Some parameters are not expressed in
this formulation for the sake of simplicity. Just a couple as-
pects are worth mentioning: the axonal delay and jitter are
implemented by a buffer (with a length equal to the maxi-
mum delay) where previous membrane states are stored, and

Fig. 1. Main interface window for the Matlab version of SENNECA. Parameters can be fed in the corresponding cells, and the correlogram from N1 to
N2 is displayed.

the duration of the injected current is implemented with a
counter.

Eq. (1) has been formulated in a time discrete manner,
by solving the current based membrane equation on a fixed
time grid of 0.1 ms (Rotter and Diesmann, 1999; Diesmann
et al., 2001), since this is the highest temporal resolution
imposed by the jitter.

2.2.1. Simulation parameters
The environment is also parameterized to define the con-

ditions under which the simulation will take place. Two halt-
ing conditions are provided: the number of spikes in the
target neuron for a correlogram to be significant, and the
maximum simulation time, given in simulation steps. The
output shape is also affected by a different parameter, the
correlogram window size.
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2.3. Description of the software tool

The web-based and the Matlab versions are equipped with
friendly graphical interfaces for data feeding and output in-
spection. We provide next some general guidelines of this
interface, since many of the tools are self-explanatory.

2.3.1. Data input
We illustrate the setting of parameters with the Matlab

version of the simulator, since everything is compiled on a
single window (the web-based version shows the same func-
tionality, but it is structured in several pages).Fig. 1 shows
such window for a specific experiment. Network size and
background activity are defined in the left side of the inter-
face, specifying the number of neurons (up to five neurons)
and the average and standard deviation of the dendritic noise
for each neuron. Physiological parameters follow, like rest-
ing potential, afterhyperpolarization and refractory period
(parameters that are shared by all neurons), threshold, decay-
ing potential and synaptic injected current for each individ-
ual neuron. Spike transmission is detailed at the middle-right
side of the interface, given by the axonal delay and the lim-

Fig. 2. Correlograms for all pairs of neurons in the experiment ofFig. 1. Each correlogram represents the combined activity of a trigger neuron (row)
with a target neuron (column). The central bin of auto-correlograms (figures in the diagonal) has been deleted for visualization purposes.

its of the uniformly distributed synaptic jitter. On top of this
set of parameters, the strengths of the connections among
the neurons are specified. The simulation parameters are fed
at the bottom-right corner of the window: number of post-
synaptic spikes to build the correlogram, maximum time
length for the simulation, and correlogram window size. In
addition to these features, a general comment of the nature
of the experiment can be stored in an annotation field.

Apart from the main sets of parameters that specify the
simulated experiment, a number of buttons are also associ-
ated to different tasks: simulation start (Simulate), extended
report of the simulation (Analysis), print the interface win-
dow (Print), reset the parameter values (Reset), save to file
the configuration and numeric results (Save data), save a
Postscript image of the window (Save image), and store
membrane potential traces in ASCII format for further anal-
ysis (Save membrane potential).

2.3.2. Simulation results
The window inFig. 1 also allows the visualization of the

main results of the simulation: the correlogram from neuron
N1 (trigger) to neuron N2 (target), as well as the number of
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Fig. 3. Membrane potential for neuron N2 in the experiment ofFig. 1 as
simulated byEq. (1).

spikes collected during the simulation (bottom-right). Also,
the Analysis button triggers the generation of an extended
report to better understand the experiment. This report in-
cludes: (1) the visualization of the correlogram for each pair
of neurons in the network (Fig. 2), (2) the evolution of mem-
brane potential for each neuron or group of neurons in a

Fig. 4. Network scheme of the experiment inFig. 1. Labeled circles represent neurons. Excitatory connections are represented by solid lines and inhibitory
connections are represented by broken lines. The relative strength of the connection is represented by the width of the line. A threshold can be applied
to show only connections that are stronger than a specified value. Synapses are represented by solid dots.

single chart (Fig. 3), and (3) a graph that schematizes the
network connectivity (Fig. 4).

All this information helps to understand the shape of the
reference correlogram (N1 to N2) in a specific simulation.
In addition, the web version produces a detailed report of
the parameters and correlograms obtained, accessible from
the simulations database, and also attached to the message
that is sent to the e-mail address given by the experimenter,
including the correlograms (ASCII files) as well as the fig-
ures (Portable Network Graphics format).

As an additional feature, the web version allows inter-
active control of the simulation state (convenient for time
consuming experiments), where the time left to finish is dis-
played, and the simulation state can be altered by the exper-
imenter (hold, stop, and continue simulation). Also, the sim-
ulations are stored in a database that can be easily accessed.

2.3.3. Software/hardware requirements
SENNECA has been implemented in ANSI/ISO C++.

The simulator is freely distributed (http://SENNECA.geb.
uma.es) in three different formats: (1) as downloadable
opened code, (2) with a graphical user interface in Matlab®,
and (3) as a web-based program.

The simulator library has been developed in C++ and
can be compiled with GCC (GNU general public license)
version 2.95. It can be done under Linux, and also Microsoft

http://SENNECA.geb.uma.es
http://SENNECA.geb.uma.es
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Windows® using MinGW with GCC 2.95. GNU Scientific
Library (GSL) version 1.0 is required to import the routines
for random numbers generation.

The simulator is equipped with two different graphical
user interfaces. Parameter setting, running simulations, and
visualization of resulting data are the main features of the
interface. One version of the interface runs under Matlab©
5.3 or higher (with Signal Processing Toolbox 4.2 or higher).
Also, a web version is provided in order to ease program
portability. Both show the same functionality, although, of
course, the Matlab version runs on the experimenter’s com-
puter, while the web version runs remotely on a heteroge-
neous cluster of computers supported by Mosix 7.0. The web
version is compatible with most web browsers (Explorer
5.0, Mozilla 5.0, Netscape 7.0 and Opera 5.0). Access to the
simulator resources requires opening an account by the ex-
perimenter, what can be done simply by contacting the site
administrator from the home page.

3. Results

Since its introduction in the 1960s (Moore et al., 1966;
Perkel et al., 1967), cross-correlation analysis has been
used extensively to study functional connectivity in dif-
ferent parts of the brain (for reviews seeKirkwood, 1979;
Vaadia and Aertsen, 1992; Reid, 2001). Although the tech-
nique is not free of limitations (e.g.Aertsen et al., 1989,1994;
Brody, 1999), its use has become increasingly popular. In
particular, there have been a series of recent papers from
separate laboratories that have used this technique for the
study of thalamocortical connections in different sensory
systems (e.g. visual:Alonso et al., 2001; auditory: Miller
et al., 2001; somatosensory:Bruno and Simons, 2002; Roy
and Alloway, 2001; Swadlow and Gusev, 2002). This re-
naissance of the technique reflects a general belief in the
scientific community that cross-correlation analysis can
be reliably used to identify certain type of monosynaptic
connections that are strong and excitatory. It is important
to notice, however, that inhibitory connections are harder
to identify with cross-correlation analysis (Aertsen and
Gerstein, 1985) and the same is true for weak excitatory
connections, particularly within the cortex.Aertsen et al.
(1994)made an important distinction between structural (or
anatomical) connectivity and functional coupling (or effec-
tive connectivity). Structural connectivity includes strong
excitatory connections that can be reliably measured with
cross-correlation analysis under different stimulus condi-
tions. In contrast, effective connectivity refers to polysynap-
tic pathways or weak monosynaptic connections that can be
only identified by cross-correlation analysis under certain
stimulus/behavioral conditions (e.g.Vaadia et al., 1995;
Aertsen et al., 1996). The computational tool presented here
should help to better distinguish between these two types
of connectivity and make more precise inferences about the
physiological properties of strong structural connections.

To illustrate how pairwise activity can be studied with this
computational tool we have performed six examples, where
changes in neural physiology and network connectivity re-
produce noticeable differences in the correlograms obtained.
The purpose of these examples is to illustrate the properties
of the simulator (the range of parameters used is not always
within physiological values). The figures that illustrate each
experiment have been imported from the graphical simula-
tion results (correlograms in Portable Network Graphics for-
mat) produced by SENNECA, and included with little make
up.

3.1. Experiment #1: the correlogram peak can be shifted
in position by changing the synaptic delay of a connection

The network consists of two neurons (namely N1 and
N2) with a monosynaptic excitatory connection from N1 to
N2. Both neurons are given equal parameter values (υ =
−70 mV, θ = −40 mV, τ = 7.5 ms, ρ = 2.5 ms, ν =
0.2, andα = 0.5 ms, what gives an approximate EPSP rise
time of 7.8 ms, andβ = 4.0 ms, yielding an approximate
EPSP duration at half amplitude of 16.5 ms). The connec-
tion strength (ω12) is set to 2× 10−4 mA, and the jitter
is 0.5 ms. Both neurons were provided with normally dis-
tributed background activity with a mean and standard de-
viation of 4× 10−5 mA for N1 and a mean and standard
deviation of 3×10−5 mA for N2. Fig. 5shows the resulting
correlograms from N1 to N2 with increasing transmission
delays (1 ms inA, 5 ms inB, and 10 ms inC). The simula-
tion results show how the monosynaptic peak shifts to the
right as the synaptic delay increases.

The time window size for the correlograms inFig. 5 is
50 ms and each simulation generates 10 000 spikes in N2.
The mean firing rates obtained are 62 spikes/s for N1 and
66 spikes/s for N2.

Fig. 5. Three excitatory monosynaptic correlograms from N1 to N2 are
shown with different transmission delays. Simulations are run for (A) 1 ms
latency, (B) 5 ms, and (C) 10 ms. As can be observed, different delays
produce increasingly larger shifts in the position of the correlogram peak.
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Fig. 6. Resulting correlograms (from N1 to N2, see circuit schemes on the left) of four simulated circuits with different number of interconnecting
neurons: (A) monosynaptic, (B) disynaptic, (C) trisynaptic, and (D) polysynaptic. The amplitude correlates inversely with the number of interneurons,
while peak’s width and shift are directly correlated.

3.2. Experiment #2: the number of serial synaptic
connections that separate two neurons affects the
amplitude, width and delay of the correlogram peak

This experiment is concerned with the number of excita-
tory interneurons that separate N1 from N2. The simulated
neurons were given the same basic parameters used in ex-
periment #1 (synaptic strength= 2 × 10−4 mA, delay=
1 ms, and jitter= 0.5 ms). Background activity also resem-
bles that of experiment #1: neuron N1 is fed with a mean
(and standard deviation) noise of 4× 10−5 mA, while neu-
rons N2 to N5 were provided with 3× 10−5 mA mean and
the standard deviation. Four circuits were simulated, start-
ing with the monosynaptic connection and adding new re-
lay neurons, up to three interneurons (polysynaptic connec-
tion). Fig. 6 shows the correlograms obtained from N1 to
N2, after 10 000 spikes were collected in N2.A reproduces
the stereotyped correlogram of a monosynaptic connection.
CorrelogramsB–D are obtained for the circuits on the left
(disynaptic, trisynaptic and polysynaptic, respectively). As
the number of serial interconnected neurons increases, the
correlogram peak decreases in amplitude, becomes wider
and shifts towards the right.

3.3. Experiment #3: synaptic jitter affects the peak
amplitude and width

In another experiment we modified the latency jitter of
a monosynaptic connection. Again, the circuit (N1 excites
N2) and parameters are the same as in experiment #1.Fig. 7
shows the correlograms (correlogram window size of 30 ms)
from N1 to N2 (with 10 000 spikes in N2) simulated with
different levels of synaptic jitter (0 ms inA, 1 ms inB, 2 ms
in C and 3 ms inD). As the jitter increases, the monosynaptic
peak becomes wider and smaller in amplitude. Also, there
is a slight shift in the peak towards the right.

3.4. Experiment #4: inhibitory connections alter the
correlogram symmetry

In experiment 4 a single neuron (N3) provided common
input to neurons N1 and N2 (connection strength from N3
to N1 and N2: 3× 10−4 mA). The setting again reproduced
that of experiment #1, although here N2 inhibits N1 and
all synaptic jitters have been set to 0.1 ms. The parame-
ter under study in this experiment is the strength of the
inhibitory connection (amplitude of PSC from N2 to N1,
ω21). Fig. 8shows the resulting correlograms, after N2 fired
10 000 times, for a PSC amplitude of 0 mA (A) (reference
common-input circuit),−1× 10−4 mA (B), −2× 10−4 mA

Fig. 7. Four excitatory monosynaptic connections were simulated with
different latency jitter. Resulting correlograms are shown for a synaptic
jitter of (A) 0 ms, (B) 1 ms, (C) 2 ms, and (D) 3 ms. As can be observed,
when the jitter increases the peak becomes wider and with less amplitude.
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Fig. 8. Correlograms from N1 to N2 (see circuit scheme on the left) from simulations of a circuit with a common input (N3) and an inhibitory
connection from N2 to N1. The PSC amplitude of the inhibitory synapse increases from 0 mA in (A), to −1 × 10−4 mA in (B), −2 × 10−4 mA in (C)
and−3 × 10−4 mA in (D). The correlogram becomes more asymmetric and the amplitude of the peak generated by common input increases.

(C), and−3×10−4 mA (D). The correlogram becomes more
asymmetric as inhibition becomes stronger. Also, the ampli-
tude of the central peak increases.

3.5. Experiment #5: the correlogram peak becomes higher
in amplitude as the EPSP rise time increases

In this experiment two monosynaptically connected neu-
rons are simulated to study the influence of a variable EPSP
rise time. Both neurons resemble the setting of experiment
#1, although their membrane time constants (τ) have been

Fig. 9. Four excitatory monosynaptic correlograms from N1 to N2 are
shown with different EPSP rise times. Simulations are run for (A) 1.1 ms
EPSP rise time (PSC rise time= 0.1 ms), (B) 1.6 ms EPSP rise time (PSC
rise time = 1 ms), (C) 2.4 ms EPSP rise time (PSC rise time= 2 ms),
and (D) 3.3 ms rise time (PSC rise time= 3 ms). Correlograms’ peak and
baseline amplitudes increases with higher EPSP rise times.

reduced to 1 ms to produce realistic EPSPs in N2; moreover,
the PSC decay time of N2 (β2) has been set to 0.5 ms and
the PSC from N1 to N2 amplitude is set to 4× 10−4 mA.
Also, the background synaptic noise currents have been ad-
justed for this simulation, using normal noise sources with
mean 2.5×10−4 mA for N1 and 2.3×10−4 mA for N2 and
standard deviation of 1× 10−4 mA for both neurons. The
post-synaptic current rise time in neuron N2 has been in-
creased progressively (0.1 ms inA, 1 ms inB, 2 ms inC, and
3 ms inD) to obtain different EPSP rise times (1.1, 1.6, 2.4,
and 3.3 ms, respectively). The correlograms reveal that the
monosynaptic peak and baseline amplitudes become higher
as the injected current rise time increases (Fig. 9).

Fig. 10. Four excitatory monosynaptic correlograms obtained with differ-
ent types of synaptic noise: Gaussian distribution (A); uniform distribu-
tion (B); 1/f noise (C); and Poissonian distribution of inter-spike interval
with synaptic failures (D). The shape of the correlograms varies for the
different noise classes.
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Table 1
Simulation benchmarks for the web-based version of SENNECA simulator over a heterogeneous Mosix-based cluster of computers

# Simultaneous simulations 5 10 20 50 100

Mean Std Mean Std Mean Std Mean Std Mean Std

Time per one simulation (sec) 14.76 1.71 23.24 3.03 40.93 5.86 59.32 25.14 107.04 42.85

Excitatory monosynaptic circuits (with the physiological parameters of experiment #1) have been simulated for 500 000 simulation steps each one, and
have simultaneously been launched with different simulations pool sizes (5, 10, 20, 50, and 100 simultaneous simulations). Times for correlograms
calculation have not been considered here.

3.6. Experiment #6: the shape of the correlogram is
affected by the type of synaptic noise

In this experiment, two monosynaptically connected neu-
rons are simulated to evaluate the influence of four differ-
ent types of background synaptic noise on the shape of the
correlogram. The physiological parameters of N1 and N2
are those of experiment #1, except for background synaptic
noise settings. InFig. 10, the correlograms represented have
been obtained from simulations of the same monosynaptic
circuit but using different noise parameters. InA, normal
distributed random noise has been used, with mean and stan-
dard deviation of 4×10−5 mA for N1 and mean and standard
deviation of 3×10−5 mA for N2. InB, a uniform distribution
was used for noise sources to N1 and N2, with minimums
of −1 × 10−5 mA for N1 and−2 × 10−5 mA for N2 and
maximums of 1×10−4 mA for N1 and 6×10−5 mA for N2.
In C, N1 and N2 was injected with 1/f noise sources (see
1/f implementation details above) with scale 7.905× 10−6

and no shift for both neurons. Finally, inD, both neurons
were injected with noise source currents following a pois-
son random distribution of inter-spike intervals with synap-
tic failures (Zador, 1998); the parameters of this noise type
for both neurons were: 10 afferent axons, 100 contacts per
axon, inter-spike interval rate of 9 ms, probability of neuro-
transmitter vesicles release of 0.85 and maximum amplitude
of PSCs of 1× 10−6 mA. As can be observed inFig. 10,
the shape of the correlograms varies for the four different
classes of noise.

4. Conclusions

The drawbacks of general-purpose simulators in comput-
ing large real time experiments can be overcome by ded-
icated software. SENNECA is a computational tool that
has been optimized to easily specify the neuron model (no
scripts, nor new languages) by parameterizing a highly flex-
ible model, that incorporate those physiological features
most relevant to correlated activity. The different formats of
graphical user interface allow the experimenter a straight-
forward input of the simulation parameter, as well as a
complete report of the results. The examples related in the
results section illustrate the competence of SENNECA to
emulate, in a computational way, the influence of mem-

brane physiology and network connectivity in correlated
firing.

SENNECA subscribes to the trend of current pro-
grams dedicated to intense computation, by providing a
front-end that allows the operation on remote machines.
Like in webMathematica (WebMathematica: Add Dynamic
Computations and Visualizations to Your WebSite, 2002)
the web-based version of SENNECA is intended to support
high cost computation, freeing the user’s computer. The
cluster that runs SENNECA can perform the simulations
of about 30 users in real time (seeTable 1), what makes
it suitable for courses of Physiology or Computational
Neuroscience where groups of students simulate correlated
activity in an interactive way. In case the computational
load increases, a scheme of cluster reservation would ap-
ply, so the groups can organize in advance the use of the
simulator.

The Matlab-script version of SENNECA simulator has
been tried locally over a modern PC (Intel® P IV, 1.8 GHz)
giving a simulation execution mean time (averaged over 100
independent simulations) of 12.3 s for 500 000 simulation
steps (with the physiological parameters of experiment #1).

Future versions of this simulator will incorporate other
analytical tools that can be useful to better understand how
neural networks generate correlated firing.
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